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Abstract
An initially empty (no edges) graph of the order of M is assumed to evolve by
adding one edge at a time. This edge can connect either two linked components
and form a new component of a larger order (coalescence of graphs) or increase
(by one) the number of edges in a given linked component. The evolution
equation for the generating functional of the probability to find in the system a
given set of occupation numbers (the numbers of graphs of the order of g having
exactly ν edges) at time t is formulated and solved exactly. The expression for
the graph composition spectrum is derived and analysed in the limit of large M.

PACS numbers: 02.50.−r, 05.90.+m, 89.75.He

Let us imagine a system comprising M functional units connected with N � M(M − 1)/2
links allowing for an exchange of the information between them. One easily recognizes a
schematic model of a computer, the Internet, a living organism or the human brain. Other (more
physical examples) of such systems are polymers, disordered materials, random electric chains.
The structures of all these systems can be modelled by a random graph in which N edges
randomly distributed among M vertices form clusters (linked components). Any realization
of the random graph can be given by {ng,ν}, a set of the numbers of linked components of
the order of g with ν edges. The problem is to find the probability for the realization of a
given partition, once N edges are randomly distributed among M vertices. In this statement
the problem had been introduced by Erdös and Renyi (1960) and then considered by many
authors (see recent review article by Albert and Barabási (2002) and references therein).

All commonly accepted approaches to the problem of the evolution of random graphs rely
upon rather sophisticated combinatorial considerations (see, e.g., Bollobás (1985), Janson
et al (2000)). In this letter, I propose another approach based on the formulation and the
solution of an equation describing the time evolution of the generating functional for the
probability to find a given set of occupation numbers at time t. The idea of this approach is
taken from my recent articles Lushnikov (2004, 2005a, 2005b, 2005c), where the sol-to-gel
transition was investigated in finite coagulating systems. Being applied to the problem of
the evolution of random graphs this approach gives very impressive and elegant results that I
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never met before. Although the analogy between the evolution of a coagulating system and a
random graph is quite straightforward and had been noticed long ago (Leyvraz 2003, Spouge
1985), the approach proposed below allows one not only to trace it in detail, but also to use
it for obtaining new interesting results in theory of random graphs. The results presented in
this letter are exact and valid for any finite random graph. It is shown that the total number of
all linked components of the order of g exactly repeats the fate of the particle mass spectrum
of a finite coagulating system with the kernel proportional to the product of the masses of
coalescing particles.

Let there be a graph of the order of M comprising N linked components. Each linked
component can be characterized with its order g, the number of vertices, and the degree of
filling ν (the number of edges in the component). It is clear that g −1 � ν � g(g −1)/2. The
minimal value of ν corresponds to a tree of the order of g and the maximal one is the number
of edges in the complete graph of the order of g. A bare vertex is also regarded as a linked
component of the order of 1.

Any state of the graph can be given by the set of the population numbers

Q = {ng,ν}, (1)

where ng,ν is the number of linked components of the order of g having exactly ν edges
(g, ν-component).

Let us consider an initially empty graph of the order of M (simply M bare vertices) and
begin to add to this graph the edges (one edge at a time) linking two valent vertices. This
process gives rise either to a coalescence of two linked components,

(l, λ) + (m,µ) −→ (l + m, λ + µ + 1) (2)

or to filling a given linked component with one extra-edge,

(g, ν) −→ (g, ν + 1). (3)

The graph thus evolves due to changing the number of linked components, their order and their
degree of filling. The efficiency of the coalescence process is proportional to lm, the number
of ways to connect two linked components by an extra-edge. The efficiency for filling a linked
component is proportional to g(g − 1)/2 − ν, the number of possible vacant placements of
the extra-edge.

Now we introduce the probability W(Q, t) to find the graph in the state Q at time t and
its generating functional,

�(X, t) =
∑
Q

W(Q, t)
∏
g,ν

xn(g,ν|Q)
g,ν , (4)

where n(g, ν|Q) stands for the occupation number ng,ν belonging to the given state Q and
X = {xg,ν} is the set of independent formal variables. The functional � obeys the equation,

V
∂�

∂t
= (L̂f + L̂c)�, (5)

where the multiplier V defines the scale of time. In theory of coagulation V is the total volume
of the system. In theory of random graph the choice V = M is preferable.

The right-hand side of this equation contains two differential operators, L̂f and L̂c. The
operator L̂f is responsible for the evolution of the filling of the linked clusters

L̂f =
∑
l,λ

[(
l(l − 1)

2
− λ + 1

)
xl,λ

∂

∂xl,λ−1
−

(
l(l − 1)

2
− λ

)
xl,λ

∂

∂xl,λ

]
. (6)
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The coalescence operator has the form

L̂c = 1

2

∑
l,λ;m,µ

lm(xl+m,λ+µ+1 − xl,λxm,µ)
∂2

∂xl,λ∂xm,µ

. (7)

Equation (5) replaces the master equation governing the time evolution of the probability
W(Q, t). Because the order of the initial graph conserves

M =
∑
l,λ

lnl,λ, (8)

the solution to the evolution equation (5) can be found in the form:

� = M!Coefzz
−(M+1) exp

(∑
g,ν

ag,ν(t)xg,νz
g

)
, (9)

where the multiplier M! provides the correct normalization of the generating functional,
�(1, t) = 1. The operation Coef introduced in (Egorychev 1977) replaces the contour
integration when one deals with formal series. By definition

Coefz

∑
k

bkz
k = b−1.

The operation Coef displays many features of ordinary residues.
On substituting equation (9) into equation (5) gives the system of equations for ag,ν(t),

V
dag,ν

dt
=

[
1

2
g(g − 1) − ν + 1

]
ag,ν−1 −

[
1

2
g(g − 1) − ν

]
ag,ν

+
1

2

∑
l,λ;m,µ

lmal,λam,µδg,l+mδν,λ+µ+1 − 1

2
Mgag,ν +

g2

2
ag,ν . (10)

Here δα,β stands for Kroneker’s delta. The initial condition to equation (10) is chosen in the
form

ag,ν = δg,1δν,0. (11)

It is easy to check that this initial condition corresponds to �(X, 0) = xM
1,0, i.e., to the initially

empty graph comprising only M bare vertices. Next, all ag,ν(t) = 0, once ν lies beyond the
permitted interval (g − 1) � ν � g(g − 1)/2.

Now let us try to solve equation (10). To this end we introduce the bivariate generating
function for ag,ν(t),

G(z, ζ ; t) =
∑
g,ν

zgζ νag,ν(t). (12)

The summation on the right-hand side of the above equation goes over all g and ν. The
equation for G(z, ζ ; t) immediately follows from equation (10),

V
∂G

∂t
= ζ

2

[(
z
∂G

∂z

)2

+ z
∂

∂z
z
∂G

∂z

]
− (ζ − 1)

(
ζ

∂G

∂ζ
+

1

2
z
∂G

∂z

)
− M

2
z
∂G

∂z
. (13)

This equation reduces to a linear one for the function D(z, ζ ; t)

V
∂D

∂t
= ζ

2
z

∂

∂z
z
∂D

∂z
− (ζ − 1)

(
ζ

∂D

∂ζ
+

1

2
z
∂D

∂z

)
, (14)

where

D(z, ζ ; t) = exp[G(z eMt/2V , ζ ; t)].
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The initial condition to this equation follows from equation (11),

D(z, ζ ; 0) = ez. (15)

Equation (14) is readily solved by separating variables. Let

D(z, ζ ; t) =
∑
n,κ

bn,κTκ(t, )Zn,κ(ζ )zn.

Then Tκ(t) = eκt and

κZn,κ = ζ

2
n2Zn,κ + (1 − ζ )

(
ζ

dZn,κ

dζ
+

n

2
Zn,κ

)
, (16)

where κ is a separation constant. The solution to this equation is

Zn,κ(ζ ) = bn,κ (1 − ζ )n
2/2−κζ κ−n/2. (17)

The function D should be analytical at ζ = 0. Hence, κ − n/2 = s, where s is a nonnegative
integer. Next, the coefficients bn,κ should be chosen from the initial condition (15). It is easy
to see that bn,κ = (

(n2−n)/2
s

)
. We then come to the result

D(z, ζ ; t) =
∞∑

n=0

zn

n!
ent/2V [ζ et/V + (1 − ζ )](n

2−n)/2. (18)

In order to return to ag,ν(t) we use the Knuth identity (Knuth 1998)

ln
∞∑

n=1

xn(n−1)/2 zn

n!
=

∞∑
n=1

(x − 1)n−1Fn−1(x)
zn

n!
. (19)

Here Fn(x) are the Mallows–Riordan polynomials (details and earlier references see Lushnikov
2005a).

Equation (19) allows us to restore Ag(ζ, t) = ∑
ν ag,ν(t)ζ

ν ,

Ag(ζ, t) = 1

g!
e−g(M−1)t/2V (et/V − 1)g−1ζ g−1Fg−1(ζ et/V + 1 − ζ ). (20)

Next, we use the expansion (Knuth 1998)

wg−1Fg−1(1 + w) =
g(g−1)/2∑
ν=g−1

Cg,νw
ν, (21)

where Cg,ν is the number of labelled linked graphs of the order of g having ν edges.
Equation (21) is readily applied for restoring ag,ν(t). The result is

ag,ν(t) = 1

g!
e−g(M−1)t/2V (et/V − 1)νCg,ν . (22)

Now we are ready to find the average number of linked components of the order of g

having exactly ν edges. From equation (9) we have

n̄g,ν(t) = M!ag,ν(t) Coefzz
−M+g−1D(z, 1, t). (23)

At ζ = 1 equation (18) gives

D(z, 1; t) =
∞∑

n=0

zn

n!
en2t/2V . (24)

We thus come to the result

n̄g,ν(t) =
(

M

g

)
e(g2−2Mg+g)t/2V (et/V − 1)νCg,ν . (25)
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Because the function D(z, 1; t) coincides with the D-function corresponding to the spectrum
of coagulating particles in the system with the kernel K(g, l) = gl considered in Lushnikov
(1978, 2004, 2005a, 2005b) we can easily derive the expression for the distribution of linked
components over their orders (numbers of vertices), n̄g = ∑

ν n̄g,ν . The result has the same
form as the average particle mass spectrum in the coagulating system with the coagulation
kernel K(g, l) = gl,

n̄g(t) =
(

M

g

)
e(g2−2Mg+g)t/2V (et/V − 1)g−1Fg−1(e

t/V ). (26)

In coagulating systems this spectrum is known to conserve the total mass M = ∑
g gn̄g and

after the critical time t = tc = 1 a giant particle forms with the mass comparable to M. For
details see in Lushnikov (2005a). Of course, the spectrum (26) contains this giant component.
However, the time dependence of partial distributions given by equation (25) differs from that
given by equation (26) and the questions come up what does it go on to the partial distributions?
Does a giant component present in them?

In order to answer these questions let us apply the result (25) to the simplest situation
when ν = g − 1, i.e. all linked components are trees. In this case Cg,g−1 = gg−2. The
distribution of the trees is then given by the formula

n̄g,ν(t) =
(

M

g

)
e(g2−2Mg+g)t/2V (et/V − 1)g−1gg−2. (27)

In the thermodynamic limit (M, V −→ ∞, their ratio is constant, M/V = 1) equation (27)
gives

n̄s
g,g−1(t) = M

gg−2

g!
tg−1 e−gt . (28)

This is exactly the mass spectrum derived from the Smoluchowskii equation with the
coagulation kernel K(g, l) = gl. This spectrum does not contain a giant particle at t > tc
and does not conserve the total mass. The problem is then how to reconcile this fact with the
statement that the giant component should appear?

The answer to this question is simple. We loose the giant tree in the thermodynamic
limit, but it presents in the exact spectrum equation (27). However, the probability to find
this tree is small as Cg,g−1

/∑
ν Cg,ν . Nevertheless, it is possible to see this giant tree in the

exact spectrum (27). The idea is simple. If the exact spectrum (28) contains a small hump
at g ∝ M we can detect it against the background of the approximate spectrum (28) which
is an exponentially dropping function at such large g. We thus consider the ratio n̄g

/
n̄s

g and
exponentiate it,

n̄g

n̄s
g

= exp[M
(µ, t)], (29)

where µ = g/M and


(µ, t) = −(1 − µ) ln(1 − µ) − µ + 1
2µ2t. (30)

Differentiating 
 over µ and putting the result equal to zero we find the position µc of the
maximum,

t = 1

µc

ln
1

1 − µc

. (31)

This is exactly the location of the giant component of the random graph (Erdös and Renyi
1960) as well as the gel particle in the respective coagulating system (Lushnikov 1978).
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Similar results can be derived for the bipartite graph. In this case two kinds of vertices
are randomly connected with edges. The edges connecting the vertices of the same sort are
forbidden. In this case the number of ways for two linked components containing m1, n1 and
m2, n2 vertices of the first and the second kinds to coalesce is proportional to m1n2 + m2n1.
The number of vacant places for edges in m, n-component is mn − ν. The minimal value of
ν is ν = m + n − 1.

Using the results of Lushnikov (2005c) it is possible to write the expressions for the
average numbers of m, n; ν-components,

n̄m,n;ν(t) =
(

Mg

m

) (
Mr

n

)
emnt/V −mMr t−nMg t (et/V − 1)νCm,n;ν, (32)

and for the number of m, n components,

n̄m,n(t) =
(

Mg

m

) (
Mr

n

)
emnt/V −mMr t−nMg t (et/V − 1)m+n−1Fm−1,n−1(e

t/V ). (33)

Here n̄m,n(t) = ∑
ν n̄m,n;ν(t),Mg,Mr are the numbers of vertices of the first and the second

kinds in the graph, Mg,r = Mg,r/V,Cm,n:ν is the number of m, n; ν-linked components, and
the polynomials Fm,n(x) introduced in Lushnikov (2005c) play the same role as Mallows–
Riordan polynomials Fg(x) in the expression for the number of linked components of the
order of g in equation (26). In particular, the polynomials wm+n−1Fm−1,n−1(1 + w) generate
Cm,n;ν ,

wm+n−1Fm−1,n−1(1 + w) =
mn∑

ν=m+n−1

Cm,n;νwν. (34)

The main results of this letter can be summarized as follows. The time evolution of
the spectrum of linked components in random graphs has been shown to be described by
the same formulae as the mass spectrum in coagulating systems with the kernel proportional
to the product of the masses of coalescing particles. The partial distributions of (g, ν)- (or
(m, n; ν)-) components are expressed in terms of the numbers of linked components with a
given number of edges. Equations (25), (26), (32), (33) are the central results of this letter.
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